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This note is a summary of recent results obtained jointly
with Paul Yang. The aufhor would like to express his gratitude to
Professor S. Coen for the invitation to deliver this lecture at
the Universitd di Bologna.

- = Several questions in harmonic analysis, partial differential

equations and applied mathematics lead to the question of
characterizing domains for which overdetermined boundary value
problems have aolutions.Z_Given the existence of an excellent

. +
[

bibliography in {1] I will hot'atfempt to trace the history of the

ol problem (D) and (N) introduced below, except to say that their

g% origins go back to the treatise [2] of Lord Rayleigh.

:ﬁf Let Q be an open relatively compact subset of real analytic
Y Riemannian manifold M. Assume further that &8Q is connected and
3
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of Lipshitz class. What can we say about 0 1: any of the

following problems (D) or (N) has an eigenvalue a > 07?

[ Au + au = 0 in Q
du
{D) u = 0 and 3n - 1 on 280
| (overdetermined Dirichlet problem)

[ Au +qu =0 4in 0

du
(D) {u=1 and 5= =1 on 80

| (overdetermined Neumann problem)

It is remarkable that the existence of such an eigenvalue
alrgady implies that 9Q is a real analytic submanifold of M (at
least if 090 1is of class Cz+€; if M=R® or WP - real
hyperbolic space - it is enough if 8Q is Lipschitz, this follows
from work of Cafarelll [3]. It is quite possible that this last
condition is always sufficient). 1In order to proceed any further
we have to impose reétrictions on both M and a. For instance,
if M =gP (resp. H“) and a 4in (D) 1is the first eigenvalue of
Dirichlet problem, i.e. u > 0, then 0 = ball (resp. geodesic
ball). This follows from a theorem of Serrin [4]. A few other
cases are known [5], [6]}, [7) of the non-existence of eigenvalues
if M =R®, 0 » ball. On the otherhand, if M = R" (resp. H®)
and 0 = ball (resp. geodesic ball) then one can see that,
considering the radial eigenfunctions of the usual Dirichlet or

Neumann problems in the role of u, there are infinitely many

eigenvalues for (D) and for (N). Sometime ago I have proved in

R that the converse was true [5], later I obtained the same

result with P. Yang in Hz(i]. We’havc now:

.

. Theorenm fef Let M= Rn(resp. Hn). the existence of infinitely

oy
many eigenvalues for either of the problems (D) or (N)

characterizes the balls (resp.geocdesic balls) among all the -
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~ ~ relatively compact domains Q with connected Lipshitz boundary.
s

Note that in the Poiﬁcaré model H" = unit ball of R® and

the geodesic balls are then euclidean balls.

It would seem to be natural to jump to the conclusion that
this theorem should remain true in all M. The following example

shows that one needs some caution.

Example Let u = u(x) = xi - x: 4ot x§u-1 - xg defined in
2%, denote by v its restriction to M = s2® 1  penote by L

2n

the Laplace operator in R“", A the Laplace Beltrami operator in

M. It is well known they are related by

o 2n~-1 8 1
(1) L = + + = A
arz r or r2

We also have

g% = Vu-% = %3 , T = |x|,

where the last identity holds by Euler'‘s formula, u being

homogeneous of degree 2. Therefore

N

d%u 2 8u 2 2u
(2) —_— e - e— ] e,
arz r or r2 r2
It follows that
2u + _(3'_‘%!1 20 + % Au = Lu = 0,

o r b o
and the function v satisfies Av + 4nv =0 on (r=1) = M,

Consider now the set Q = connected component containing
(1,0,°°-,0) of {x € M: u(x) > 0). Then on J9Q we have v(x) =0
and therefore a = 4n is the first eigenvalue of Dirichlet
problem for 0. We claim now that g% constant on 48Q. Note
that the (exterior) normal derivative is an operator tangent to

the sphere M. First, observe that (2) implies
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(3) vu(x) . x if x e 80.

Since x is the normal vector to M in Rzn we have

Yu(x) € TxM for x € 0. Therefore we have
(4) vux) = x) - Rm) if x € s0,
where 1 represents the unit exterior normal to Q@ in M. We
only need to verify that |Vu(x)| = constant when x € 8Q. But

vu‘x) = 2(811-3‘20"' 'xzn-ll ‘xzn)
and

(5) [vul? = ¢|x|2 = ¢ 1f xe M,

which says that v satisfies:

~

AV + 4n v = 0 in O

v > >0 in ©

(6) < vs(Q on &9
g% = - 2 on 8Q.

Note that topologically 80 = sP"1 , §™1 yhich shows that

Serrin's theorem fails on M. We.want to show now that there. are

infinitely many solutions for both (D) and (N) in Q.

Let f be a twice differentiable function of a single real

varjable and define
Po(x): = f(u(x)).

Using again identity (2) we have

Le = £7(u)|vu]? + £/ (u)Lu = £~ (u)4|x|? = 42" (u) on M.
3= = r(uEE - 2e(u) 2 a2 (upu on M.
2 2
2@ . 4o u 2 ., Su 2 . -
;—r—z- 41 (\l)[}'] + T £ (w) 5r ‘? £'(u)u

= 231”(u)u2 + % f'(u)u = Cf“(u)uz + 2¢'(u)u on M.
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Hence, on M,
Lo = 4£(u) = 4£" (u)u? + 4nf'(uju + Ap,
and

(7) Ap + ap = 4f”(u)(1-u?) - 4nf'(u)u + af(u).

Therefore the equation A¢ + ap = 0 in Q becomes the ordinary

differential equation
(8) 4(1-t2)£“(t) - 4ntf(t) + af(t) =0, Os t s 1

This equation has a regular singular point at end point t = 1.

Each eigenvalue a and eigenfunction of (8) satisfying
(9) £(1) bounded, £(0) = 0

provides an ejigenvalue for (D) since
Vo = £'(u)vVu
hence again Ve¢'x = 0 on 8Q and to check whether g% = constant

we only need to compute IV¢|2 on 8Q. But

1Ve|2 = (£(u))?|vu|? = 4(£(u))?,

which shows

(10) g% =: 2£(0) on aQ0.

(This is different from zero since the eigenfunctions of (8) - (9)

satisfy ¢£'(0) » 0). This same computation shows that the

eigenfunctions of (8) satisfying
(11) £(1) bounded, £'(0) = 0,

will provide eigenfunctions e¢(x) for (N). This time g% = 0 on
80 and ¢ = £(0) » O on 80. Since it is a well known theorem
of the theory of ordinary differential equations that (8)-(9) and
(8)~(10) have infinitely many eigenvalues, the domain © has
infinitely many eigenvalues for (D) and (N). Q is not even

topologically a geodesic ball in M,
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On this note yeAleave_thg,reader to reflect on these

beautiful questions.
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